
Initial Post 

Password resetting is an expected feature for any website that provides some form 
of user authentication. When the feature is used, websites will typically send a 
password reset link via email if a user wishes to change their password (this URL 
may appear in a format similar to a query URL, e.g. http://example-
domain.com/reset_password?token=6fta040f9j). After loading this URL and 
entering/confirming the new password, the user's password will be changed. 
Although the process is simple and various solutions exist for implementing this 
behavior, it is extremely vulnerable to architectural shortcomings which could allow 
an attacker to gain unauthorized access to user accounts. OWASP classifies these 
shortcomings as "Broken Authentication" (i.e. category A2), and authentication 
weaknesses related to password recovery are further described by CWE-640 
(MITRE, 2021). 

As an example of how this vulnerability can be created, consider the generation of 
the token for a password reset. Tokens serve as evidence that a password reset 
request is valid, and should be unique, single-use values. Random Number 
Generators (RNGs) can be used to generate tokens, however, the RNG in use 
needs to be properly constructed. Many modern RNGs are pseudo-random, which 
means that they contain an internal state which is used to generate sequences of 
seemingly random numbers (NIST, 2010). Due to the reliance on internal state, if 
that state is replicated, it is possible to begin predicting values that will be generated. 
In addition, the exact algorithm used to generate numbers can also act as an attack 
vector- for example, Java's standard library for generating random numbers 
(java.util.Random) makes use of an algorithm which is easily cracked if six 
sequential values are found (Oracle, 2020; Haldir, 2004). As a result, if a poor RNG 
is used, an attacker could figure out the generator's state and begin computing 
password reset tokens which could then be used to gain control of user accounts. An 
activity diagram is presented below to demonstrate how an attacker could gain 
control of user accounts by doing this. 

To prevent this, apart from selecting a more secure RNG (more commonly known as 
a cryptographically secure RNG), it is generally recommended that a RNG's internal 
state should be dictated by a truly random process (NIST, 2010), and should be 
reset regularly. Furthermore, limits should be placed on how many password reset 
requests can be placed in a specific period of time, for a specific user, or 
alternatively, implement the token generation system according to the microservice 
architecture, with each microservice's RNG instance having a unique internal state. 
This is necessary in order to prevent an attacker from gaining a large set of 
observable values which would act as an attack vector. 

References 

Haldir. (2004) How to crack a Linear Congruential Generator. Available 
from: http://www.reteam.org/papers/e59.pdf [Accessed 18 August 2021]. 

MITRE. (2021) CWE-640: Weak Password Recovery Mechanism for Forgotten 
Password. Available from: https://cwe.mitre.org/data/definitions/640.html [Accessed 
18 August 2021]. 



NIST. (2010).A Statistical Test Suite for Random and Pseudorandom Number 
Generators for Cryptographic Applications. Available 
from: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
22r1a.pdf [Accessed 18 August 2021]. 

Oracle. (2020) Random (Java Platform SE 8). Available 
from: https://docs.oracle.com/javase/8/docs/api/java/util/Random.html [Accessed 18 
August 2021]. 

 
 



 
 


